Post-deposition processing methods to induce preferential orientation in contorted hexabenzocoronene thin films.
نویسندگان
چکیده
The structuring in organic electrically active thin films critically influences the performance of devices comprising them. Controlling film structure, however, remains challenging and generally requires stringent deposition conditions or modification of the substrate. To this end, we have developed post-deposition processing methods that are decoupled from the initial deposition conditions to induce different out-of-plane molecular orientations in contorted hexabenzocoronene (HBC) thin films. As-deposited HBC thin films lack any long-range order; subjecting them to post-deposition processing, such as hexanes-vapor annealing, thermal annealing, and physical contact with elastomeric poly(dimethyl siloxane), induces crystallization with increasing extents of preferential edge-on orientation, corresponding to greater degrees of in-plane π-stacking. Accordingly, transistors comprising HBC thin films that have been processed under these conditions exhibit field-effect mobilities that increase by as much as 2 orders of magnitude with increasing extents of molecular orientation. The ability to decouple HBC deposition from its subsequent structuring through post-deposition processing affords us the unique opportunity to tune competing molecule-molecule and molecule-solvent interactions, which ultimately leads to control over the structure and electrical function of HBC films.
منابع مشابه
Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing.
Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent...
متن کاملBand-Gap Tuning Of Electron Beam Evaporated Cds Thin Films
The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...
متن کاملPreparation and proposed mechanism of ZnO Nanostructure Thin Film on Glass with Highest c-axis Orientation
In this paper, ZnO thin film is deposited on slide glass substrate using the sol-gel process. Presenting well-defined orientation of ZnO thin films Nanostructure were obtained by dip coating of zinc acetate dihydrate, monoethanolamine (MEA), de-ionized water and isopropanol alcohol. The annealed ZnO thin films were transparent ca 85-90% in visible range with an absorption edges at about 375 nm....
متن کاملThe effect of Ga-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis
In this research, zinc oxide thin films with gallium impurity have been deposited using the spray pyrolysis technique. The structural and optical properties of these films are investigated as a function of gallium doping concentrations. The ZnO and ZnO:Ga films grown at a substrate temperature of 350 ºC with gallium doping concentrations from 1.0 to 5.0.%. The XRD analysis indicated that ZnO f...
متن کاملStructural and electro-optic properties of pulsed laser deposited Bi4Ti3O12 thin films on MgO
Ferroelectric Bi4Ti3012 thin films have been grown on MgO ( 100) and MgO( 110) substrates by the pulsed laser deposition. X-ray diffraction studies show that the films on both substrates have preferential crystallographic orientation such that most of their c axes are close to the substrate normal direction. The film on MgO( 110) shows quadratic and hysteretic electro-optic characteristics with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2013